La setmana passada es va publicar una nota de premsa sobre un treball acabat de publicar a la revista nord-americana The Astrophysical Journal. Fins ací, cap novetat, perquè totes les setmanes tenim notes de premsa de resultats més o menys interessants. Si m'ature en aquest cas és per la seua relació directa amb l'arrel d'aquest blog: l'Univers és violent. Els autors del treball ens parlen d'un perill extra-terrestre que havíem subestimat: les supernoves. Un altre.

Fins ara, la llista de perills per a la vida en un planeta amb biosfera funcional incloïa les explosions estel·lars més potents conegudes com erupcions de raigs gamma (gamma-ray bursts) a distàncies de menys d'alguns milers d'anys llum, i les explosions més comunes, supernoves, a distàncies menors d'una trentena d'anys llum. Segons l'article publicat la setmana passada, aquesta distància podria ser molt optimista en el cas de les supernoves: les observacions en raigs X amb satèl·lits han permès revisitar aquesta idea i fan pensar en un escenari més perillós. En definitiva, podríem situar l'article en el gènere del terror científic.

Ara que tenim el què, passem al com. Vam explicar que a les ones de xoc generades per explosions estel·lars poden ser l'origen de part dels raigs còsmics. A més, aquestes regions en expansió són brillants en quasi tot l'espectre electromagnètic, i també en altes energies. Ací és on està el perill per a la vida: la radiació X i gamma podria destruir la capa d'ozó d'una atmosfera planetària. Sense ozó, la radiació ultraviolada travessaria aquesta capa fàcilment, arribant a la biosfera.

Vivim envoltats de radiació electromagnètica però la realment perillosa és la capaç d'ionitzar àtoms, destruir molècules. La radiació ultraviolada, els raigs X i els raigs gamma poden alterar cèl·lules i produir tumors, o directament cremar-nos a les energies més altes. De la banda òptica en avall (energies més baixes), la radiació és innòcua. Altrament, no n'hi hauria vida al planeta. De primer d'empirisme.

Il·lustració de l'efecte de l'explosió sobre un planeta. NASA/CXC/M. Weiss

Tanmateix, no és suficient amb que les supernoves emeten radiació d'altes energies. Aquesta ha de ser continuada en el temps i suficientment intensa com per alterar l'atmosfera i afectar seriosament la biosfera. Si l'explosió ocorre lluny, o si no és suficientment potent (això depèn del tipus d'estrella), pot quedar tot en una alteració més o menys rellevant de l'atmosfera. El que els autors han descobert és que l'emissió en raigs X de les supernoves és més intensa del que s'havia pensat durant una fase posterior a la inicial. La clau està en que per a un cert tipus de supernoves, l'ona de xoc topeta amb un medi més dens de l'habitual, producte de l'acumulació de material ejectat per pulsacions violentes de l'estrella anteriors a l'explosió.

Aquesta etapa de col·lisió amb un medi dens genera un augment considerable de la producció energètica, més que no s'havia tingut en compte. L'impacte s'iniciaria temps després de l'explosió inicial, en arribar l'ona de xoc a aquesta regió d'alta densitat. Encara pitjor, podria tindre una durada suficientment llarga com per afectar una atmosfera com la terrestre de manera profunda.

Els càlculs que fan els autors indiquen que un cas així podria produir efectes letals a distàncies de fins a 180 anys-llum en els casos més extrems, depenent de la potència de l'explosió. A més de la potència, un altre factor important i poc o gens ben determinat és el de la intensitat de la radiació necessària per fer malbé una atmosfera, que també influeix en el càlcul de la distància de perill.

Els autors proposen cercar registres geològics que puguen revelar episodis d'aquest tipus en el passat, atès que el Sol es troba un una bombolla relativament calenta i de baixa densitat probablement creada per dues o tres explosions estel·lars properes en el passat. També especulen sobre la possibilitat que aquestes supernoves hagen influït de manera rellevant en l'evolució de la vida al nostre planeta.

I ara, la pregunta evident: quina és la probabilitat que això torne a passar? Quant de temps ens resta? No cal patir massa per això, per un doble motiu: per una banda, les estrelles que exploten com supernoves tenen vides molt més curtes que l'edat actual de la galàxia, i, per l'altra, només se'n produeixen de noves amb certa freqüència en llocs on hi ha formació estel·lar activa, i no és el cas en la rodalia del Sol. El nostre entorn més proper és, en aquest sentit, una bassa d'oli. Trobarem, però, nous perills en la galàxia que ens pogueren afectar? Romandrem atents a la literatura científica de terror.

Mirem amunt una nit clara i els nostres detectors de radiació electromagnètica, també coneguts com a ulls, ens permeten veure les estrelles i la llum solar reflectida per la superfície dels planetes. La llum visible. Del cel, però, ens arriba radiació electromagnètica de diferents bandes de l'espectre que els nostres ulls no poden detectar. L'atmosfera n'absorbeix una gran part, però no tota ni en totes les bandes de l'espectre. Radiació i més radiació, la gran missatgera de les notícies del Cosmos, l'Hermes dels cels.

Tanmateix, n'hi ha d'altres missatgers que els nostres detectors biològics no poden veure. Tal com vàrem explicar en l'entrada anterior, el nostre planeta és bombardejat de manera contínua per partícules carregades (principalment protons), quasi tan veloces com la llum, que col·lideixen amb els àtoms de l'atmosfera i generen una pluja de partícules resultants d'aquests impactes. Els raigs còsmics.

D'on venen i quin missatge ens porten aquestes partícules alades va ser el motiu de preocupació principal de molts astrofísics al llarg del segle passat. I encara ho és. Un dels primers mecanismes que es va proposar per explicar-ne l'origen i les energies assolides per aquestes partícules va ser les ones de xoc. El científic italià Enrico Fermi va proposar un mecanisme mitjançant el qual les partícules podien guanyar energia en aquest escenari.

Per entendre'l, hem de pensar que en els processos de gran escala com els que ocorren en l'Univers, n'hi ha una doble realitat: per una banda, hi ha allò que ocorre a eixes escales grans, que es pot explicar amb la física dels fluids i els plasmes (fluids magnetitzats); per l'altra, el que passa amb les partícules que conformen el fluid. Com el riu i les molècules d'aigua. L'escala microscòpica depén en gran mesura de la macroscòpica; tanmateix, les escales són tan diferents (partícules, per una banda, i escales majors que la grandària de les estrelles) que l'estudi d'ambdós processos es fa habitualment per separat.

Les ones de xoc es produeixen quan un fluid es propaga més ràpidament que la velocitat del so del medi que travessa. L'energia que transporta aquesta ona s'inverteix en arrossegar i escalfar el medi xocat, que no se l'esperava, aquesta galtada. Les ones de xoc tenen eixa gràcia, que no avisen: com que es propaguen més ràpidament que el so, no hi ha remor ni avís previ. L'impacte n'és l'únic avís.

En aquesta situació tan poc envejable es troba, per exemple, el gas que hi ha entre les estrelles (medi interestel·lar) quan una d'aquestes esclata com supernova, però no només, com veurem en futures entrades. I sí, ja hem revelat un dels possibles orígens dels raigs còsmics.

Segons el model de Fermi, les partícules que han estat víctimes d'una ona de xoc col·lideixen entre elles i també són desviades per les línies del camp magnètic (recordem que el camp magnètic exerceix una força sobre les partícules carregades). Les col·lisions i interaccions amb el camp magnètic poden fer que una partícula creue l'ona de xoc avant i arrere moltes vegades. La clau de la història està en el fet que cada vegada que creu l'ona de xoc, la partícula guanya energia. Així, pot assolir-ne tanta que puga escapar del sistema i viatjar per la galàxia, o per l'espai intergalàctic, a una velocitat propera a la de la llum, gràcies a tota aquesta energia assolida.

Esquema del procés d'acceleració de partícules tipus Fermi I (Y Ohira 2008). L'ona de xoc està representada per una línia discontínua. Les partícules interaccionen amb el camp magnètic a banda, adquirint energia suficient per abandonar el sistema.

A més, la distribució energètica de les partícules que s'espera mitjançant aquest procés coincideix amb una gran part –no tota– de la dels raigs còsmics observats. Vet ací un mecanisme que explica perquè l'Univers va ple de partícules boges, bales perdudes. Algunes acaben en la nostra atmosfera, produint reaccions en cadena i radiació d'alta energia.

Quan torneu a mirar amunt, en una nit clara, recordeu que els vostres detectors de radiació electromagnètica, també coneguts com a ulls, no són capaços de veure tot el que realment n'hi ha al cel. I recordeu que en aquell precís instant, subproductes de col·lisions de raigs còsmics amb l'atmosfera (i també altres partícules que provenen directament d'altres estrelles, o fins i tot altres galàxies) vos travessen el cos. És la remor de l'Univers violent.