Fem un parèntesi en la sèrie d’articles sobre binàries per parlar d’Antònia Font i els neutrins. Tots els qui els hem escoltat sabem que les lletres de Joan Miquel Oliver inclouen moltes referències a la Física i, en particular a l’Astrofísica i la Cosmologia. Un tema del seu darrer àlbum Venc amb tu, que és una joieta, resumeix perfectament el que dic. Això, però, ja ho va explicar Del buit al Tot en un fil de twitter que recomane llegir.

'Venc amb tu'. Antònia Font. La cançó tracta sobre la consciència respecte els misteris de l'Univers i la pròpia existència, en contrast amb les coses quotidianes, i l'única certesa de 'vindre amb tu'.

Dissabte passat vam gaudir un concert fantàstic del grup a València. Pau Debon va introduir el tema Neutrins de Vostè és aquí parlant-nos d’unes partícules petitíssimes que ens travessen de continu, que travessen les parets del teatre i els nostres cossos, i qualsevol paret. ‘Neutrins que tot ho travessen, a mils en micro-tempestes, petits, traspassen es cossos, atòmics, inclús no tan grossos.’ Efectivament, travessen fins i tot el nostre planeta!

La lletra de la cançó, breu, és un poema de quatre versos que concentra la fascinació que produeixen en l’autor. ‘Neutrins, pareix impossible, sou tot matèria intangible, neutrins, amics invisibles, sou indestructibles, tranquils.

Neutrins. Antònia Font.

I d’on venen aquests amics invisibles, indestructibles, tranquils? Els neutrins van ser descoberts arran d’una predicció teòrica de Wolfgang Pauli l'any 1930, que els va anticipar com una solució a un problema de conservació de l’energia en certes reaccions nuclears. La seua detecció experimental en els anys cinquanta per l’equip liderat per C. Cowan i F. Reines va obrir una nova finestra a l’Univers.

Efectivament, del Cosmos ens n’arriben de manera contínua, amb quatre possibles orígens: generats en el procés de fusió nuclear al nucli del Sol, del fons de neutrins que es van produir poc després del Big Bang per col·lisions de raigs còsmics amb àtoms de l’atmosfera que donen neutrins i altres partícules com productes, o directament de fenòmens de l’Univers Violent: supernoves, galàxies actives...

Els primers, nombrosos per la proximitat del Sol, ens travessen després d’uns huit minuts de viatge des del nucli solar. En contrast, una estimació simplista permet estimar que un paquet d’energia o partícula de llum, un fotó per als amics, necessita entorn d’un milió d’anys per arribar des del nucli del Sol a la seua superfície (i huit minuts més fins a la Terra). Els neutrins, però, tot ho travessen, a mils en micro-tempestes, petits, traspassen es cossos....

Esquema de galàxia activa en què col·lisions entre partícules podrien originar neutrins detectables. Crèdit: NASA/IceCube

En el cas del fons de neutrins (equivalent al fons de radiació de microones), es tracta del fòssil d’aquestes partícules alliberades quan la densitat de l’Univers va travessar el llindar que els impedia propagar-se. Tan dens era l’Univers tot just abans! La densitat d’un medi que puga atrapar els neutrins depèn de l’energia del neutrí, però, per fer-nos-en una idea, seria de l’ordre o superior la densitat d’un nucli atòmic (1017 kg/m3).

Dels raigs còsmics i el seu origen en vam parlar en aquest blog. Passem, per tant, a les supernoves i les galàxies actives. En el primer cas, durant el col·lapse d’una estrella massiva es produeixen reaccions nuclears en cadena. Com a conseqüència, se’n produeixen molts de neutrins. Quan la densitat de l’estrella col·lapsada es fa prou gran, queden atrapats i depositen tota l’energia que arrosseguen dins del mateix objecte. El paradigma actual d’explosions supernova inclou aquest procés com fonamental per a l’explosió: els neutrins, indestructibles, tranquils, en serien els protagonistes!

Esquema del detector de neutrins IceCube. Per detectar neutrins calen volums enormes per augmentar la probabilitat d'interacció/detecció. Històricament s'han fet servir mines abandonades, mentre que actualment s'instal·len al gel o a la mar. Crèdit: IceCube.

Pel que fa a les galàxies actives, els detectors de partícules actuals cerquen correlacions amb els dolls que tenen un angle petit amb la línia d’observació, els blàzars.1 Aquests dolls aporten emissió brillant a molt altes energies (raigs gamma) i són candidats a ser origen d’emissió de neutrins. De moment, n’hi ha dues galàxies actives amb aquestes propietats que han estat assenyalades com possibles emissores d’uns neutrins que van ser detectats fa uns anys per IceCube, el detector que n’hi ha a l’Antàrtida. Aquest observatori detecta neutrins provinents tant de l'Hemisferi Sud com del Nord! I és que, com que els neutrins tot ho travessen també és molt difícil detectar-los!

En Astrofísica n’hi ha una broma (exagerada?) sobre aquests números: per fer una tesi doctoral d’observacions en el visible cal acumular milions i milions de fotons d’aquesta banda de l’espectre; en raigs X en caldrien uns quants milers; ara bé, amb un grapat de neutrins se'n poden fer centenars.

Mentre Pau Debon ens cantava els versos assegut en un banquet, ens van travessar, només provinents del Sol, entre 1016 i 1017 neutrins al llarg dels 100 segons de la cançó. I és probable que cap ni un d'ells s'aturara ni un segon amb nosaltres. Indiferents, tranquils, van seguir el seu camí cap a altres indrets de l'Univers.

Què divertit, i bonic, lo que escriu Oliver quan està avorrit.

  1. Els quàsars representen el subconjunt més potent dels blàzars ↩︎

En Astrofísica, com en qualsevol branca de la ciència, hi ha nombres, quantitats, amb una rellevància especial. Màgiques en podríem dir, si no tinguérem por que algú pensara que ho són realment. No, no són màgiques, hi sol haver una explicació, però eixe és el valor numèric que tenen.

Una altra cosa són les constants universals, com la velocitat de la llum, la constant de gravitació universal... En aquests casos no sabem exactament per què tenen el valor que tenen i no cap altre. El cas és que l'Univers seria diferent de com és si tingueren un altre valor. Veges, quines coses més importants ignorem encara. Bo, tornem al fil, que el perdrem.

Un d'aquests valors és 1,4 masses solars. Els càlculs de l'astrofísic indi Subrahmanyan Chandrasekhar li van revelar que aquesta massa és un límit físic que juga un paper fonamental en l'astrofísica estel·lar. I en l'Univers violent.

Segons aquests càlculs, les condicions físiques en una estrella compacta donen com a resultat un gas de Fermi, en què la força que s'oposa al col·lapse gravitatori de l'objecte és causada per la pressió de degeneració dels electrons. Els electrons són de la família dels fermions, un tipus de partícules elementals que, segons diu el principi d'exclusió de Pauli (coses quàntiques), no poden ocupar dos estats energètics exactament iguals. Si la matèria està molt comprimida i tenim, per tant, molts electrons per unitat de volum, els estats energètics van plens i els electrons han d'ocupar estats amb energies cada vegada majors. La resistència dels electrons a comprimir-se més genera una pressió que compensa, com hem dit, la força de la gravetat. Fins a una massa d'1,4 masses solars.

Si no heu entès res del paràgraf anterior, no patiu. Només heu de tindre en compte que en un nan blanc, allò que sosté l'estabilitat de l'estrella és una força repulsiva entre electrons associada als seus possibles estats energètics.

Per damunt d'això, els electrons no poden suportar el pes de l'estrella i es precipiten als nuclis. Les col·lisions entre aquests electrons i els protons produeixen neutrons... I si es produeix el col·lapse, el rebot de les capes externes causa una explosió supernova. Al centre, romandria bé un estel de neutrons, bé un forat negre, depenent de la seua massa. En parlarem.

En l'entrada anterior vam parlar d'estrelles binàries de baixa massa. Fem un pas endavant, sense eixir de parells d'estrelles amb masses relativament baixes (poques masses solars). Suposem que eixa estrella que crema abans el seu hidrogen i abandona la seqüència principal acaba com un nan blanc. I suposem que té una massa inferior, però propera a 1,4 masses solars. En el moment en què la companya comença a cedir-li matèria i el nan blanc arriba a aquesta quantitat de massa total... bom, supernova (tipus Ia).

Corbes de llum de diferents supernoves tipus Ia (esquerra) i correcció basada en les seues propietats (dreta) per tal d'establir una corba universal per aquest tipus de supernoves. Crèdit: Durham University.

L'explosió es pot observar des de distàncies cosmològiques. I és precisament gràcies al fet que les explosions ocorren amb unes propietats tan semblants que totes tenen una brillantor intrínseca bàsicament igual. Per tant, si n'observem una més brillant que altra és només per la diferència de distàncies. Per això aquestes supernoves són usades per a mesurar distàncies de manera precisa allà on no arriba la paral·laxi o les estrelles variables cefeides.

La setmana passada es va publicar una nota de premsa sobre un treball acabat de publicar a la revista nord-americana The Astrophysical Journal. Fins ací, cap novetat, perquè totes les setmanes tenim notes de premsa de resultats més o menys interessants. Si m'ature en aquest cas és per la seua relació directa amb l'arrel d'aquest blog: l'Univers és violent. Els autors del treball ens parlen d'un perill extra-terrestre que havíem subestimat: les supernoves. Un altre.

Fins ara, la llista de perills per a la vida en un planeta amb biosfera funcional incloïa les explosions estel·lars més potents conegudes com erupcions de raigs gamma (gamma-ray bursts) a distàncies de menys d'alguns milers d'anys llum, i les explosions més comunes, supernoves, a distàncies menors d'una trentena d'anys llum. Segons l'article publicat la setmana passada, aquesta distància podria ser molt optimista en el cas de les supernoves: les observacions en raigs X amb satèl·lits han permès revisitar aquesta idea i fan pensar en un escenari més perillós. En definitiva, podríem situar l'article en el gènere del terror científic.

Ara que tenim el què, passem al com. Vam explicar que a les ones de xoc generades per explosions estel·lars poden ser l'origen de part dels raigs còsmics. A més, aquestes regions en expansió són brillants en quasi tot l'espectre electromagnètic, i també en altes energies. Ací és on està el perill per a la vida: la radiació X i gamma podria destruir la capa d'ozó d'una atmosfera planetària. Sense ozó, la radiació ultraviolada travessaria aquesta capa fàcilment, arribant a la biosfera.

Vivim envoltats de radiació electromagnètica però la realment perillosa és la capaç d'ionitzar àtoms, destruir molècules. La radiació ultraviolada, els raigs X i els raigs gamma poden alterar cèl·lules i produir tumors, o directament cremar-nos a les energies més altes. De la banda òptica en avall (energies més baixes), la radiació és innòcua. Altrament, no n'hi hauria vida al planeta. De primer d'empirisme.

Il·lustració de l'efecte de l'explosió sobre un planeta. NASA/CXC/M. Weiss

Tanmateix, no és suficient amb que les supernoves emeten radiació d'altes energies. Aquesta ha de ser continuada en el temps i suficientment intensa com per alterar l'atmosfera i afectar seriosament la biosfera. Si l'explosió ocorre lluny, o si no és suficientment potent (això depèn del tipus d'estrella), pot quedar tot en una alteració més o menys rellevant de l'atmosfera. El que els autors han descobert és que l'emissió en raigs X de les supernoves és més intensa del que s'havia pensat durant una fase posterior a la inicial. La clau està en que per a un cert tipus de supernoves, l'ona de xoc topeta amb un medi més dens de l'habitual, producte de l'acumulació de material ejectat per pulsacions violentes de l'estrella anteriors a l'explosió.

Aquesta etapa de col·lisió amb un medi dens genera un augment considerable de la producció energètica, més que no s'havia tingut en compte. L'impacte s'iniciaria temps després de l'explosió inicial, en arribar l'ona de xoc a aquesta regió d'alta densitat. Encara pitjor, podria tindre una durada suficientment llarga com per afectar una atmosfera com la terrestre de manera profunda.

Els càlculs que fan els autors indiquen que un cas així podria produir efectes letals a distàncies de fins a 180 anys-llum en els casos més extrems, depenent de la potència de l'explosió. A més de la potència, un altre factor important i poc o gens ben determinat és el de la intensitat de la radiació necessària per fer malbé una atmosfera, que també influeix en el càlcul de la distància de perill.

Els autors proposen cercar registres geològics que puguen revelar episodis d'aquest tipus en el passat, atès que el Sol es troba un una bombolla relativament calenta i de baixa densitat probablement creada per dues o tres explosions estel·lars properes en el passat. També especulen sobre la possibilitat que aquestes supernoves hagen influït de manera rellevant en l'evolució de la vida al nostre planeta.

I ara, la pregunta evident: quina és la probabilitat que això torne a passar? Quant de temps ens resta? No cal patir massa per això, per un doble motiu: per una banda, les estrelles que exploten com supernoves tenen vides molt més curtes que l'edat actual de la galàxia, i, per l'altra, només se'n produeixen de noves amb certa freqüència en llocs on hi ha formació estel·lar activa, i no és el cas en la rodalia del Sol. El nostre entorn més proper és, en aquest sentit, una bassa d'oli. Trobarem, però, nous perills en la galàxia que ens pogueren afectar? Romandrem atents a la literatura científica de terror.

Mirem amunt una nit clara i els nostres detectors de radiació electromagnètica, també coneguts com a ulls, ens permeten veure les estrelles i la llum solar reflectida per la superfície dels planetes. La llum visible. Del cel, però, ens arriba radiació electromagnètica de diferents bandes de l'espectre que els nostres ulls no poden detectar. L'atmosfera n'absorbeix una gran part, però no tota ni en totes les bandes de l'espectre. Radiació i més radiació, la gran missatgera de les notícies del Cosmos, l'Hermes dels cels.

Tanmateix, n'hi ha d'altres missatgers que els nostres detectors biològics no poden veure. Tal com vàrem explicar en l'entrada anterior, el nostre planeta és bombardejat de manera contínua per partícules carregades (principalment protons), quasi tan veloces com la llum, que col·lideixen amb els àtoms de l'atmosfera i generen una pluja de partícules resultants d'aquests impactes. Els raigs còsmics.

D'on venen i quin missatge ens porten aquestes partícules alades va ser el motiu de preocupació principal de molts astrofísics al llarg del segle passat. I encara ho és. Un dels primers mecanismes que es va proposar per explicar-ne l'origen i les energies assolides per aquestes partícules va ser les ones de xoc. El científic italià Enrico Fermi va proposar un mecanisme mitjançant el qual les partícules podien guanyar energia en aquest escenari.

Per entendre'l, hem de pensar que en els processos de gran escala com els que ocorren en l'Univers, n'hi ha una doble realitat: per una banda, hi ha allò que ocorre a eixes escales grans, que es pot explicar amb la física dels fluids i els plasmes (fluids magnetitzats); per l'altra, el que passa amb les partícules que conformen el fluid. Com el riu i les molècules d'aigua. L'escala microscòpica depén en gran mesura de la macroscòpica; tanmateix, les escales són tan diferents (partícules, per una banda, i escales majors que la grandària de les estrelles) que l'estudi d'ambdós processos es fa habitualment per separat.

Les ones de xoc es produeixen quan un fluid es propaga més ràpidament que la velocitat del so del medi que travessa. L'energia que transporta aquesta ona s'inverteix en arrossegar i escalfar el medi xocat, que no se l'esperava, aquesta galtada. Les ones de xoc tenen eixa gràcia, que no avisen: com que es propaguen més ràpidament que el so, no hi ha remor ni avís previ. L'impacte n'és l'únic avís.

En aquesta situació tan poc envejable es troba, per exemple, el gas que hi ha entre les estrelles (medi interestel·lar) quan una d'aquestes esclata com supernova, però no només, com veurem en futures entrades. I sí, ja hem revelat un dels possibles orígens dels raigs còsmics.

Segons el model de Fermi, les partícules que han estat víctimes d'una ona de xoc col·lideixen entre elles i també són desviades per les línies del camp magnètic (recordem que el camp magnètic exerceix una força sobre les partícules carregades). Les col·lisions i interaccions amb el camp magnètic poden fer que una partícula creue l'ona de xoc avant i arrere moltes vegades. La clau de la història està en el fet que cada vegada que creu l'ona de xoc, la partícula guanya energia. Així, pot assolir-ne tanta que puga escapar del sistema i viatjar per la galàxia, o per l'espai intergalàctic, a una velocitat propera a la de la llum, gràcies a tota aquesta energia assolida.

Esquema del procés d'acceleració de partícules tipus Fermi I (Y Ohira 2008). L'ona de xoc està representada per una línia discontínua. Les partícules interaccionen amb el camp magnètic a banda, adquirint energia suficient per abandonar el sistema.

A més, la distribució energètica de les partícules que s'espera mitjançant aquest procés coincideix amb una gran part –no tota– de la dels raigs còsmics observats. Vet ací un mecanisme que explica perquè l'Univers va ple de partícules boges, bales perdudes. Algunes acaben en la nostra atmosfera, produint reaccions en cadena i radiació d'alta energia.

Quan torneu a mirar amunt, en una nit clara, recordeu que els vostres detectors de radiació electromagnètica, també coneguts com a ulls, no són capaços de veure tot el que realment n'hi ha al cel. I recordeu que en aquell precís instant, subproductes de col·lisions de raigs còsmics amb l'atmosfera (i també altres partícules que provenen directament d'altres estrelles, o fins i tot altres galàxies) vos travessen el cos. És la remor de l'Univers violent.